Ore modules¶
Let
A Ore module over
Such a map
Equivalently, a Ore module is a module over the (noncommutative)
Ore polynomial ring
Defining Ore modules
SageMath provides support for creating and manipulating Ore
modules that are finite free over the base ring
To start with, the method
sage.rings.polynomial.ore_polynomial_ring.OrePolynomialRing.quotient_module()
creates the quotient
sage: K.<z> = GF(5^3)
sage: S.<X> = OrePolynomialRing(K, K.frobenius_endomorphism())
sage: M = S.quotient_module(X^2 + z)
sage: M
Ore module of rank 2 over Finite Field in z of size 5^3 twisted by z |--> z^5
Classical methods are available and we can work with elements in
sage: M.basis()
[(1, 0), (0, 1)]
sage: v = M((z, z^2)); v
(z, z^2)
sage: z*v
(z^2, 2*z + 2)
The Ore action (or equivalently the structure of
sage: X*v
(3*z^2 + 2*z, 2*z^2 + 4*z + 4)
The method sage.modules.ore_module.OreModule.pseudohom()
returns the map
sage: M.pseudohom()
Free module pseudomorphism (twisted by z |--> z^5) defined by the matrix
[ 0 1]
[4*z 0]
Domain: Ore module of rank 2 over Finite Field in z of size 5^3 twisted by z |--> z^5
Codomain: Ore module of rank 2 over Finite Field in z of size 5^3 twisted by z |--> z^5
A useful feature is the possibility to give chosen names to the vectors of the canonical basis. This is easily done as follows:
sage: N.<u,v,w> = S.quotient_module(X^3 + z*X + 1)
sage: N
Ore module <u, v, w> over Finite Field in z of size 5^3 twisted by z |--> z^5
sage: N.basis()
[u, v, w]
Alternatively, one can pass in the argument names; this
could be useful in particular when we want to name the vectors
basis
sage: A = S.quotient_module(X^11 + z, names='e')
sage: A
Ore module <e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10> over Finite Field in z of size 5^3 twisted by z |--> z^5
sage: A.basis()
[e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10]
Do not forget to use the method inject_variables() to get the
sage: e0
Traceback (most recent call last):
...
NameError: name 'e0' is not defined
sage: A.inject_variables()
Defining e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10
sage: e0
e0
Submodules and quotients
SageMath provides facilities for creating submodules and quotient
modules of Ore modules.
First of all, we define the Ore module
sage: P = X^2 + z*X + 1
sage: U = S.quotient_module(P^2, names='u')
sage: U.inject_variables()
Defining u0, u1, u2, u3
We now build the submodule sage.modules.ore_module.OreModule.span():
sage: V = U.span(P*u0)
sage: V
Ore module of rank 2 over Finite Field in z of size 5^3 twisted by z |--> z^5
sage: V.basis()
[u0 + (z^2+2*z+2)*u2 + 4*z*u3,
u1 + (2*z^2+4*z+4)*u2 + u3]
We underline that the span is really the
As before, one can use the attributes names to give explicit
names to the basis vectors:
sage: V = U.span(P*u0, names='v')
sage: V
Ore module <v0, v1> over Finite Field in z of size 5^3 twisted by z |--> z^5
sage: V.inject_variables()
Defining v0, v1
sage: v0
v0
sage: U(v0)
u0 + (z^2+2*z+2)*u2 + 4*z*u3
A coercion map from
sage: v0 - u0
(z^2+2*z+2)*u2 + 4*z*u3
We can create the quotient
sage: W = U.quo(P*u0)
sage: W
Ore module of rank 2 over Finite Field in z of size 5^3 twisted by z |--> z^5
sage: W.basis()
[u2, u3]
We see that SageMath reuses by default the names of the representatives
to denote the vectors in the quotient names.
Shortcuts for creating quotients are also available:
sage: U / (P*u0)
Ore module of rank 2 over Finite Field in z of size 5^3 twisted by z |--> z^5
sage: U/V
Ore module of rank 2 over Finite Field in z of size 5^3 twisted by z |--> z^5
Morphisms of Ore modules
For a tutorial on morphisms of Ore modules, we refer to
sage.modules.ore_module_morphism.
AUTHOR:
Xavier Caruso (2024-10)
Xavier Caruso (2025-08); add support for Ore modules over PIDs
- class sage.modules.ore_module.OreAction[source]¶
Bases:
ActionAction by left multiplication of Ore polynomial rings over Ore modules.
- class sage.modules.ore_module.OreModule(mat, ore, denominator, names, category)[source]¶
Bases:
UniqueRepresentation,FreeModule_ambientGeneric class for Ore modules.
- Element[source]¶
alias of
OreModuleElement
- ambient_modules()[source]¶
Return the list of modules in which this module naturally lives.
EXAMPLES:
sage: K.<a> = GF(7^5) sage: S.<X> = OrePolynomialRing(K, K.frobenius_endomorphism()) sage: P = X^2 + a sage: M = S.quotient_module(P^3, names='e') sage: M Ore module <e0, e1, e2, e3, e4, e5> over Finite Field in a of size 7^5 twisted by a |--> a^7 sage: M.inject_variables() Defining e0, e1, e2, e3, e4, e5
For an ambient module, the list is reduced to one element (namely the module itself):
sage: M.ambient_modules() [Ore module <e0, e1, e2, e3, e4, e5> over Finite Field in a of size 7^5 twisted by a |--> a^7]
On the contrary, for a submodule of
, the list also contains the ambient space:sage: MP = M.span(P*e0) sage: MP.ambient_modules() [Ore module of rank 4 over Finite Field in a of size 7^5 twisted by a |--> a^7, Ore module <e0, e1, e2, e3, e4, e5> over Finite Field in a of size 7^5 twisted by a |--> a^7]
If we now create a submodule of
, the list gets even longer:sage: MP2 = MP.span(P^2*e0) sage: MP2.ambient_modules() [Ore module of rank 2 over Finite Field in a of size 7^5 twisted by a |--> a^7, Ore module of rank 4 over Finite Field in a of size 7^5 twisted by a |--> a^7, Ore module <e0, e1, e2, e3, e4, e5> over Finite Field in a of size 7^5 twisted by a |--> a^7]
We underline nevertheless that if we define
has a submodule of , the intermediate does not show up in the list:sage: MP2 = M.span(P^2*e0) sage: MP2.ambient_modules() [Ore module of rank 2 over Finite Field in a of size 7^5 twisted by a |--> a^7, Ore module <e0, e1, e2, e3, e4, e5> over Finite Field in a of size 7^5 twisted by a |--> a^7]
- basis()[source]¶
Return the canonical basis of this Ore module.
EXAMPLES:
sage: K.<z> = GF(5^3) sage: S.<X> = OrePolynomialRing(K, K.frobenius_endomorphism()) sage: M = S.quotient_module(X^3 - z) sage: M.basis() [(1, 0, 0), (0, 1, 0), (0, 0, 1)]
- covers()[source]¶
Return the list of modules of which this module is a quotient.
EXAMPLES:
sage: K.<a> = GF(7^5) sage: S.<X> = OrePolynomialRing(K, K.frobenius_endomorphism()) sage: P = X^2 + a sage: M = S.quotient_module(P^3, names='e') sage: M Ore module <e0, e1, e2, e3, e4, e5> over Finite Field in a of size 7^5 twisted by a |--> a^7 sage: M.inject_variables() Defining e0, e1, e2, e3, e4, e5
For an ambient module, the list is reduced to one element (namely the module itself):
sage: M.covers() [Ore module <e0, e1, e2, e3, e4, e5> over Finite Field in a of size 7^5 twisted by a |--> a^7]
We now create a quotient of
and observe what happens:sage: MP2 = M.quo(P^2*e0) sage: MP2.covers() [Ore module of rank 4 over Finite Field in a of size 7^5 twisted by a |--> a^7, Ore module <e0, e1, e2, e3, e4, e5> over Finite Field in a of size 7^5 twisted by a |--> a^7]
If we now create a quotient of
, another item is added to the list:sage: MP = MP2.quo(P*e0) sage: MP.covers() [Ore module of rank 2 over Finite Field in a of size 7^5 twisted by a |--> a^7, Ore module of rank 4 over Finite Field in a of size 7^5 twisted by a |--> a^7, Ore module <e0, e1, e2, e3, e4, e5> over Finite Field in a of size 7^5 twisted by a |--> a^7]
We underline nevertheless that if we directly define
has a quotient of , the intermediate does not show up in the list:sage: MP = M.quo(P^2*e0) sage: MP.covers() [Ore module of rank 4 over Finite Field in a of size 7^5 twisted by a |--> a^7, Ore module <e0, e1, e2, e3, e4, e5> over Finite Field in a of size 7^5 twisted by a |--> a^7]
- fitting_index(other=None)[source]¶
Return the generator of the Fitting ideal of the quotient of
otherby this module.INPUT:
other(default:None) – an Ore module; ifNone, the ambient space of this module
EXAMPLES:
sage: A.<t> = GF(3)[] sage: f = A.hom([t+1]) sage: S.<X> = OrePolynomialRing(A, f) sage: P = X^2 + t sage: M = S.quotient_module(P^2, names='e') sage: M.inject_variables() Defining e0, e1, e2, e3
We create a submodule and compute its Fitting index:
sage: N = M.span(X^3*e0) sage: N.fitting_index() t^6 + t^4 + t^2
Here is another example where the submodule has smaller rank; in this case, the Fitting index is
:sage: MP = M.span(P*e0) sage: MP Ore module of rank 2 over Univariate Polynomial Ring in t over Finite Field of size 3 twisted by t |--> t + 1 sage: MP.fitting_index() 0
Another example with two submodules of
:sage: NP = M.span(X^3*P*e0) sage: NP.fitting_index() # index in M 0 sage: NP.fitting_index(MP) t^3 + 2*t
We note that it is actually not necessary that
othercontainsself; if it is not the case, a fraction is returned:sage: MP.fitting_index(NP) 1/(t^3 + 2*t)
- gen(i)[source]¶
Return the
-th vector of the canonical basis of this Ore module.EXAMPLES:
sage: K.<z> = GF(5^3) sage: S.<X> = OrePolynomialRing(K, K.frobenius_endomorphism()) sage: M = S.quotient_module(X^3 - z) sage: M.gen(0) (1, 0, 0) sage: M.gen(1) (0, 1, 0) sage: M.gen(2) (0, 0, 1) sage: M.gen(3) Traceback (most recent call last): ... IndexError: generator is not defined
- gens()[source]¶
Return the canonical basis of this Ore module.
EXAMPLES:
sage: K.<z> = GF(5^3) sage: S.<X> = OrePolynomialRing(K, K.frobenius_endomorphism()) sage: M = S.quotient_module(X^3 - z) sage: M.gens() [(1, 0, 0), (0, 1, 0), (0, 0, 1)]
- hom(im_gens, codomain=None)[source]¶
Return the morphism from this Ore module to
codomaindefined byim_gens.INPUT:
im_gens– a datum defining the morphism to build; it could either a list, a tuple, a dictionary or a morphism of Ore modulescodomain(default:None) – a Ore module, the codomain of the morphism; ifNone, it is inferred fromim_gens
EXAMPLES:
sage: K.<t> = Frac(GF(5)['t']) sage: S.<X> = OrePolynomialRing(K, K.derivation()) sage: P = X^3 + 2*t*X^2 + (t^2 + 2)*X + t sage: Q = t*X^2 - X + 1 sage: U = S.quotient_module(P, names='u') sage: U.inject_variables() Defining u0, u1, u2 sage: V = S.quotient_module(P*Q, names='v') sage: V.inject_variables() Defining v0, v1, v2, v3, v4
The first method for creating a morphism from
to is to explicitly write down its matrix in the canonical bases:sage: mat = matrix(3, 5, [1, 4, t, 0, 0, ....: 0, 1, 0, t, 0, ....: 0, 0, 1, 1, t]) sage: f = U.hom(mat, codomain=V) sage: f Ore module morphism: From: Ore module <u0, u1, u2> over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5 twisted by d/dt To: Ore module <v0, v1, v2, v3, v4> over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5 twisted by d/dt
This method is however not really convenient because it requires to compute beforehand all the entries of the defining matrix. Instead, we can pass the list of images of the generators:
sage: g = U.hom([Q*v0, X*Q*v0, X^2*Q*v0]) sage: g Ore module morphism: From: Ore module <u0, u1, u2> over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5 twisted by d/dt To: Ore module <v0, v1, v2, v3, v4> over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5 twisted by d/dt sage: g.matrix() [1 4 t 0 0] [0 1 0 t 0] [0 0 1 1 t]
One can even give the values of the morphism on a smaller set as soon as the latter generates the domain as Ore module. The syntax uses dictionaries as follows:
sage: h = U.hom({u0: Q*v0}) sage: h Ore module morphism: From: Ore module <u0, u1, u2> over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5 twisted by d/dt To: Ore module <v0, v1, v2, v3, v4> over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5 twisted by d/dt sage: g == h True
Finally
im_genscan also be itself a Ore morphism, in which case SageMath tries to cast it into a morphism with the requested domains and codomains. As an example below, we restrict to a submodule:sage: C.<c0,c1> = U.span((X + t)*u0) sage: gC = C.hom(g) sage: gC Ore module morphism: From: Ore module <c0, c1> over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5 twisted by d/dt To: Ore module <v0, v1, v2, v3, v4> over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5 twisted by d/dt sage: g(c0) == gC(c0) True sage: g(c1) == gC(c1) True
- identity_morphism()[source]¶
Return the identity morphism of this Ore module.
EXAMPLES:
sage: K.<a> = GF(7^5) sage: S.<X> = OrePolynomialRing(K, K.frobenius_endomorphism()) sage: M.<u,v> = S.quotient_module(X^2 + a*X + a^2) sage: id = M.identity_morphism() sage: id Ore module endomorphism of Ore module <u, v> over Finite Field in a of size 7^5 twisted by a |--> a^7 sage: id(u) u sage: id(v) v
- is_submodule(other)[source]¶
Return
Trueifotheris included in this module;Falseotherwise.EXAMPLES:
sage: A.<t> = GF(3)[] sage: f = A.hom([t+1]) sage: S.<X> = OrePolynomialRing(A, f) sage: P = X^2 + t sage: M = S.quotient_module(P^3, names='e') sage: M.inject_variables() Defining e0, e1, e2, e3, e4, e5 sage: MP = M.span(P*e0) sage: MP2 = MP.span(P^2*e0) sage: MP2.is_submodule(MP) True sage: MP.is_submodule(MP2) False
- is_zero()[source]¶
Return
Trueif this Ore module is reduced to zero.EXAMPLES:
sage: K.<z> = GF(5^3) sage: S.<X> = OrePolynomialRing(K, K.frobenius_endomorphism()) sage: M = S.quotient_module(X^2 + z) sage: M Ore module of rank 2 over Finite Field in z of size 5^3 twisted by z |--> z^5 sage: M.is_zero() False sage: Q = M.quo(M) sage: Q.is_zero() True
- matrix()[source]¶
Return the matrix giving the action of the Ore variable on this Ore module.
EXAMPLES:
sage: K.<z> = GF(5^3) sage: S.<X> = OrePolynomialRing(K, K.frobenius_endomorphism()) sage: P = X^3 + z*X^2 - z^2*X + (z+2) sage: M = S.quotient_module(P) sage: M.matrix() [ 0 1 0] [ 0 0 1] [4*z + 3 z^2 4*z]
We recognize the companion matrix attached to the Ore polynomial
. This is of course not a coincidence given that the pseudomorphism corresponds to the left multiplicationSee also
- module()[source]¶
Return the underlying free module of this Ore module.
EXAMPLES:
sage: A.<t> = QQ['t'] sage: S.<X> = OrePolynomialRing(A, A.derivation()) sage: M = S.quotient_module(X^3 - t) sage: M Ore module of rank 3 over Univariate Polynomial Ring in t over Rational Field twisted by d/dt sage: M.module() Ambient free module of rank 3 over the principal ideal domain Univariate Polynomial Ring in t over Rational Field
- multiplication_map(P)[source]¶
Return the multiplication by
acting on this Ore module.INPUT:
P– a scalar in the base ring, or a Ore polynomial
EXAMPLES:
sage: K.<a> = GF(7^5) sage: S.<X> = OrePolynomialRing(K, K.frobenius_endomorphism()) sage: P = X^3 + a*X^2 + X - a^2 sage: M = S.quotient_module(P)
We define the scalar multiplication by an element in the base ring:
sage: f = M.multiplication_map(3) sage: f Ore module endomorphism of Ore module of rank 3 over Finite Field in a of size 7^5 twisted by a |--> a^7 sage: f.matrix() [3 0 0] [0 3 0] [0 0 3]
Be careful that an element in the base ring defines a Ore morphism if and only if it is fixed by the twisting morphisms and killed by the derivation (otherwise the multiplication by this element does not commute with the Ore action). In SageMath, attempting to create the multiplication by an element which does not fulfill these requirements leads to an error:
sage: M.multiplication_map(a) Traceback (most recent call last): ... ValueError: does not define a morphism of Ore modules
As soon as it defines a Ore morphism, one can also build the left multiplication by an Ore polynomial:
sage: g = M.multiplication_map(X^5) sage: g Ore module endomorphism of Ore module of rank 3 over Finite Field in a of size 7^5 twisted by a |--> a^7 sage: g.matrix() [ 3*a^4 + 3*a^3 + 6*a^2 + 5*a 4*a^4 + 5*a^3 + 2*a^2 + 6 6*a^4 + 6*a^3 + a^2 + 4] [ a^2 + 3 5*a^4 + 5*a^3 + 6*a^2 + 4*a + 1 a^3 + 5*a^2 + 4] [6*a^4 + 6*a^3 + 3*a^2 + 3*a + 1 4*a^4 + 2*a^3 + 3*a + 5 6*a^4 + 6*a^3 + 2*a^2 + 5*a + 2]
We check that the characteristic polynomial of
is the reduced norm of the Ore polynomial we started with (this is a classical property):sage: g.charpoly() x^3 + 4*x^2 + 2*x + 5 sage: P.reduced_norm(var='x') x^3 + 4*x^2 + 2*x + 5
- ore_ring(names='x', action=True)[source]¶
Return the underlying Ore polynomial ring.
INPUT:
names(default:x) – a string, the name of the variableaction(default:True) – a boolean; ifTrue, an action of the Ore polynomial ring on the Ore module is set
EXAMPLES:
sage: K.<a> = GF(5^3) sage: S.<X> = OrePolynomialRing(K, K.frobenius_endomorphism()) sage: M.<e1,e2> = S.quotient_module(X^2 - a) sage: M.ore_ring() Ore Polynomial Ring in x over Finite Field in a of size 5^3 twisted by a |--> a^5
We can use a different variable name:
sage: M.ore_ring('Y') Ore Polynomial Ring in Y over Finite Field in a of size 5^3 twisted by a |--> a^5
Alternatively, one can use the following shortcut:
sage: T.<Z> = M.ore_ring() sage: T Ore Polynomial Ring in Z over Finite Field in a of size 5^3 twisted by a |--> a^5
In all the above cases, an action of the returned Ore polynomial ring on
is registered:sage: Z*e1 e2 sage: Z*e2 a*e1
Specifying
action=Falseprevents this to happen:sage: T.<U> = M.ore_ring(action=False) sage: U*e1 Traceback (most recent call last): ... TypeError: unsupported operand parent(s) for *: 'Ore Polynomial Ring in U over Finite Field in a of size 5^3 twisted by a |--> a^5' and 'Ore module <e1, e2> over Finite Field in a of size 5^3 twisted by a |--> a^5'
- over_fraction_field()[source]¶
Return the scalar extension of this Ore module to the fraction field.
EXAMPLES:
sage: A.<t> = QQ[] sage: d = A.derivation() sage: S.<X> = OrePolynomialRing(A, d) sage: M = S.quotient_module(X^2 + t*X + t) sage: M Ore module of rank 2 over Univariate Polynomial Ring in t over Rational Field twisted by d/dt sage: M.over_fraction_field() Ore module of rank 2 over Fraction Field of Univariate Polynomial Ring in t over Rational Field twisted by d/dt
If given, the variable names are preserved in this operation:
sage: N.<u,v> = S.quotient_module(X^2 + t*X + t) sage: N Ore module <u, v> over Univariate Polynomial Ring in t over Rational Field twisted by d/dt sage: N.over_fraction_field() Ore module <u, v> over Fraction Field of Univariate Polynomial Ring in t over Rational Field twisted by d/dt
When the base ring is already a field, the same module is returned:
sage: K.<z> = GF(5^3) sage: S.<X> = OrePolynomialRing(K, K.frobenius_endomorphism()) sage: M = S.quotient_module(X^2 + z*X + z) sage: M.over_fraction_field() is M True
- pseudohom()[source]¶
Return the pseudomorphism giving the action of the Ore variable on this Ore module.
EXAMPLES:
sage: K.<z> = GF(5^3) sage: S.<X> = OrePolynomialRing(K, K.frobenius_endomorphism()) sage: P = X^3 + z*X^2 - z^2*X + (z+2) sage: M = S.quotient_module(P) sage: M.pseudohom() Free module pseudomorphism (twisted by z |--> z^5) defined by the matrix [ 0 1 0] [ 0 0 1] [4*z + 3 z^2 4*z] Domain: Ore module of rank 3 over Finite Field in z of size 5^3 twisted by z |--> z^5 Codomain: Ore module of rank 3 over Finite Field in z of size 5^3 twisted by z |--> z^5
See also
- quo(sub, remove_torsion=False, names=None, check=True)[source]¶
alias of
quotient().
- quotient(sub, remove_torsion=False, names=None, check=True)[source]¶
Return the quotient of this Ore module by the submodule generated (over the underlying Ore ring) by
gens.INPUT:
sub– a list of vectors or submodules of this Ore moduleremove_torsion(default:False) – a booleannames(default:None) – the name of the vectors in a basis of the quotientcheck(default:True) – a boolean, ignored
EXAMPLES:
sage: A.<t> = GF(5)['t'] sage: S.<X> = OrePolynomialRing(A, A.derivation()) sage: P = X^2 + t*X + t sage: M = S.quotient_module(P^3, names='e') sage: M.inject_variables() Defining e0, e1, e2, e3, e4, e5
We create the quotient
:sage: modP = M.quotient(P*e0) sage: modP Ore module of rank 2 over Univariate Polynomial Ring in t over Finite Field of size 5 twisted by d/dt
As a shortcut, we can write
quoinstead ofquotientor even use the/operator:sage: modP = M / (P*e0) sage: modP Ore module of rank 2 over Univariate Polynomial Ring in t over Finite Field of size 5 twisted by d/dt
In the above example, the quotient is still a free module. It might happen however that torsion shows up in the quotient. Currently, torsion Ore modules are not implemented, so attempting to create a quotient with torsion raises an error:
sage: M.quotient(X^5*e0) Traceback (most recent call last): ... NotImplementedError: torsion Ore modules are not implemented
It is nevertheless always possible to build the free part of the quotient by passing in the argument
remove_torsion=True:sage: M.quotient(X^5*e0, remove_torsion=True) Ore module of rank 0 over Univariate Polynomial Ring in t over Finite Field of size 5 twisted by d/dt
By default, the vectors in the quotient have the same names as their representatives in
:sage: modP.basis() [(t+4)*e0 + (t+3)*e1, (4*t+3)*e0 + t*e2]
One can override this behavior by setting the attributes
names:sage: modP = M.quo(P*e0, names='u') sage: modP.inject_variables() Defining u0, u1 sage: modP.basis() [u0, u1]
Note that a coercion map from the initial Ore module to its quotient is automatically set. As a consequence, combining elements of
MandmodPin the same formula works:sage: t*u0 + e1 (t^2+2*t+2)*u0 + (t+4)*u1
One can combine the construction of quotients and submodules without trouble. For instance, here we build the space
:sage: modP2 = M / (P^2*e0) sage: N = modP2.span(P*e0) sage: N Ore module of rank 2 over Univariate Polynomial Ring in t over Finite Field of size 5 twisted by d/dt sage: N.basis() [t*e0 + t*e1 + e2, (4*t+1)*e0 + e1 + (t+4)*e2 + e3]
- random_element(*args, **kwds)[source]¶
Return a random element in this Ore module.
Extra arguments are passed to the random generator of the base ring.
EXAMPLES:
sage: A.<t> = QQ['t'] sage: S.<X> = OrePolynomialRing(A, A.derivation()) sage: M = S.quotient_module(X^3 - t, names='e') sage: M.random_element() # random (-1/2*t^2 - 3/4*t + 3/2)*e0 + (-3/2*t^2 - 3*t + 4)*e1 + (-6*t + 2)*e2 sage: M.random_element(degree=5) # random (4*t^5 - 1/2*t^4 + 3/2*t^3 + 6*t^2 - t - 1/10)*e0 + (19/3*t^5 - t^3 - t^2 + 1)*e1 + (t^5 + 4*t^4 + 4*t^2 + 1/3*t - 33)*e2
- rename_basis(names, coerce=False)[source]¶
Return the same Ore module with the given naming for the vectors in its distinguished basis.
INPUT:
names– a string or a list of strings, the new namescoerce(default:False) – a boolean; ifTrue, a coercion map from this Ore module to renamed version is set
EXAMPLES:
sage: K.<z> = GF(5^3) sage: S.<X> = OrePolynomialRing(K, K.frobenius_endomorphism()) sage: M = S.quotient_module(X^2 + z) sage: M Ore module of rank 2 over Finite Field in z of size 5^3 twisted by z |--> z^5 sage: Me = M.rename_basis('e') sage: Me Ore module <e0, e1> over Finite Field in z of size 5^3 twisted by z |--> z^5
Now compare how elements are displayed:
sage: M.random_element() # random (3*z^2 + 4*z + 2, 3*z^2 + z) sage: Me.random_element() # random (2*z+4)*e0 + (z^2+4*z+4)*e1
At this point, there is no coercion map between
MandMe. Therefore, adding elements in both parents results in an error:sage: M.random_element() + Me.random_element() Traceback (most recent call last): ... TypeError: unsupported operand parent(s) for +: 'Ore module of rank 2 over Finite Field in z of size 5^3 twisted by z |--> z^5' and 'Ore module <e0, e1> over Finite Field in z of size 5^3 twisted by z |--> z^5'
In order to set this coercion, one should define
Meby passing the extra argumentcoerce=True:sage: Me = M.rename_basis('e', coerce=True) sage: M.random_element() + Me.random_element() # random 2*z^2*e0 + (z^2+z+4)*e1
Warning
Use
coerce=Truewith extreme caution. Indeed, setting inappropriate coercion maps may result in a circular path in the coercion graph which, in turn, could eventually break the coercion system.Note that the bracket construction also works:
sage: M.<v,w> = M.rename_basis() sage: M Ore module <v, w> over Finite Field in z of size 5^3 twisted by z |--> z^5
In this case,
and are automatically defined:sage: v + w v + w
- span(gens, saturate=False, names=None, check=True)[source]¶
Return the submodule or saturated submodule of this Ore module generated (over the underlying Ore ring) by
gens.We recall that a submodule
of is called saturated if the quotient has no torsion. The saturation of in is the submodule consisting of vectors such that for some nonzero in the base ring.INPUT:
gens– a list of vectors or submodules of this Ore modulesaturate(default:False) – a boolean; ifTrue, return the saturation of the submodule generated bygensnames(default:None) – the name of the vectors in a basis of this submodulecheck(default:True) – a boolean, ignored
EXAMPLES:
sage: A.<t> = GF(5)['t'] sage: S.<X> = OrePolynomialRing(A, A.derivation()) sage: P = X^2 + t*X + t sage: M = S.quotient_module(P^3, names='e') sage: M.inject_variables() Defining e0, e1, e2, e3, e4, e5
We create the submodule
:sage: MP = M.span([P*e0]) sage: MP Ore module of rank 4 over Univariate Polynomial Ring in t over Finite Field of size 5 twisted by d/dt sage: MP.basis() [t*e0 + t*e1 + e2, (4*t+1)*e0 + e1 + (t+4)*e2 + e3, (t+4)*e0 + e1 + 3*e2 + (t+4)*e3 + e4, (4*t+1)*e0 + 4*e1 + 4*e3 + (t+4)*e4 + e5]
When there is only one generator, encapsulating it in a list is not necessary; one can equally write:
sage: MP = M.span(P*e0)
In this case, the module
is already saturated, so computing its saturation yields the same result:sage: MPsat = M.span(P*e0, saturate=True) sage: MPsat.basis() [t*e0 + t*e1 + e2, (4*t+1)*e0 + e1 + (t+4)*e2 + e3, (t+4)*e0 + e1 + 3*e2 + (t+4)*e3 + e4, (4*t+1)*e0 + 4*e1 + 4*e3 + (t+4)*e4 + e5] sage: MPsat == MP True
Of course, it is not always the case:
sage: N = M.span(X^5*e0) sage: N.basis() [(t^3+4*t^2+4*t)*e0 + (t^2+3*t+3)*e1 + (2*t^2+t+4)*e2 + 3*t^2*e3 + (2*t^2+2*t+2)*e4, (3*t^2+3*t+4)*e0 + (t^3+4*t^2+t+3)*e1 + (t^2+2*t+4)*e2 + (2*t^2+2*t+4)*e3 + (3*t^2+4*t+2)*e4, (t+3)*e0 + (t^2+t)*e1 + (t^3+4*t^2+3*t)*e2 + (t^2+t+1)*e3 + (2*t^2+3*t+3)*e4, e0 + (3*t+4)*e1 + (4*t^2+4*t+3)*e2 + (t^3+4*t^2+1)*e3 + (t^2+4)*e4, 4*e1 + (t+3)*e2 + (2*t^2+2*t+3)*e3 + (t^3+4*t^2+2*t+1)*e4, e5] sage: Nsat = M.span(X^5*e0, saturate=True) sage: Nsat.basis() [e0, e1, e2, e3, e4, e5]
If one wants, one can give names to the basis of the submodule using the attribute
names:sage: MP2 = M.span(P^2*e0, names='u') sage: MP2.inject_variables() Defining u0, u1 sage: MP2.basis() [u0, u1] sage: M(u0) (t^2+t)*e0 + (2*t^2+t+2)*e1 + (t^2+2*t+2)*e2 + 2*t*e3 + e4
Note that a coercion map from the submodule to the ambient module is automatically set:
sage: M.has_coerce_map_from(MP2) True
Therefore, combining elements of
MandMP2in the same expression perfectly works:sage: t*u0 + e1 (t^3+t^2)*e0 + (2*t^3+t^2+2*t+1)*e1 + (t^3+2*t^2+2*t)*e2 + 2*t^2*e3 + t*e4
Here is an example with multiple generators:
sage: MM = M.span([MP2, P*e1]) sage: MM.basis() [e0, e1, e2, e3, e4, e5]
In this case, we obtain the whole space.
Creating submodules of submodules is also allowed:
sage: N = MP.span(P^2*e0) sage: N Ore module of rank 2 over Univariate Polynomial Ring in t over Finite Field of size 5 twisted by d/dt sage: N.basis() [(t^2+t)*e0 + (2*t^2+t+2)*e1 + (t^2+2*t+2)*e2 + 2*t*e3 + e4, (3*t^2+1)*e0 + (2*t^2+3*t+2)*e1 + 4*t*e2 + (t^2+3*t+4)*e3 + (2*t+3)*e4 + e5]
See also
- twisting_derivation()[source]¶
Return the twisting derivation corresponding to this Ore module.
EXAMPLES:
sage: R.<t> = QQ[] sage: T.<Y> = OrePolynomialRing(R, R.derivation()) sage: M = T.quotient_module(Y + t^2) sage: M.twisting_derivation() d/dt
When the twisting derivation in zero, nothing is returned:
sage: K.<z> = GF(5^3) sage: S.<X> = OrePolynomialRing(K, K.frobenius_endomorphism()) sage: M = S.quotient_module(X + z) sage: M.twisting_derivation()
See also
- twisting_morphism()[source]¶
Return the twisting morphism corresponding to this Ore module.
EXAMPLES:
sage: K.<z> = GF(5^3) sage: S.<X> = OrePolynomialRing(K, K.frobenius_endomorphism()) sage: M = S.quotient_module(X + z) sage: M.twisting_morphism() Frobenius endomorphism z |--> z^5 on Finite Field in z of size 5^3
When the twisting morphism is trivial (that is, the identity), nothing is returned:
sage: R.<t> = QQ[] sage: T.<Y> = OrePolynomialRing(R, R.derivation()) sage: M = T.quotient_module(Y + t^2) sage: M.twisting_morphism()
See also
- class sage.modules.ore_module.OreQuotientModule(cover, submodule, names)[source]¶
Bases:
OreModuleClass for quotients of Ore modules.
- cover()[source]¶
If this quotient in
, return .EXAMPLES:
sage: K.<t> = Frac(GF(5)['t']) sage: S.<X> = OrePolynomialRing(K, K.derivation()) sage: M.<v,w> = S.quotient_module((X + t)^2) sage: N = M.quo((X + t)*v) sage: N.cover() Ore module <v, w> over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5 twisted by d/dt sage: N.cover() is M True
See also
- covers()[source]¶
Return the list of modules of which this module is a quotient.
EXAMPLES:
sage: K.<a> = GF(7^5) sage: S.<X> = OrePolynomialRing(K, K.frobenius_endomorphism()) sage: P = X^2 + a sage: M = S.quotient_module(P^3, names='e') sage: M Ore module <e0, e1, e2, e3, e4, e5> over Finite Field in a of size 7^5 twisted by a |--> a^7 sage: M.inject_variables() Defining e0, e1, e2, e3, e4, e5
For an ambient module, the list is reduced to one element (namely the module itself):
sage: M.covers() [Ore module <e0, e1, e2, e3, e4, e5> over Finite Field in a of size 7^5 twisted by a |--> a^7]
We now create a quotient of
and observe what happens:sage: MP2 = M.quo(P^2*e0) sage: MP2.covers() [Ore module of rank 4 over Finite Field in a of size 7^5 twisted by a |--> a^7, Ore module <e0, e1, e2, e3, e4, e5> over Finite Field in a of size 7^5 twisted by a |--> a^7]
If we now create a quotient of
, another item is added to the list:sage: MP = MP2.quo(P*e0) sage: MP.covers() [Ore module of rank 2 over Finite Field in a of size 7^5 twisted by a |--> a^7, Ore module of rank 4 over Finite Field in a of size 7^5 twisted by a |--> a^7, Ore module <e0, e1, e2, e3, e4, e5> over Finite Field in a of size 7^5 twisted by a |--> a^7]
We underline nevertheless that if we directly define
has a quotient of , the intermediate does not show up in the list:sage: MP = M.quo(P^2*e0) sage: MP.covers() [Ore module of rank 4 over Finite Field in a of size 7^5 twisted by a |--> a^7, Ore module <e0, e1, e2, e3, e4, e5> over Finite Field in a of size 7^5 twisted by a |--> a^7]
- morphism_modulo(f)[source]¶
If this quotient in
and is a morphism, return the induced map .EXAMPLES:
sage: K.<t> = Frac(GF(5)['t']) sage: S.<X> = OrePolynomialRing(K, K.derivation()) sage: P = X + t sage: M.<v,w> = S.quotient_module(P^2) sage: Q.<wbar> = M.quo(P*v) sage: f = M.multiplication_map(X^5) sage: f Ore module endomorphism of Ore module <v, w> over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5 twisted by d/dt sage: g = Q.morphism_modulo(f) sage: g Ore module morphism: From: Ore module <v, w> over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5 twisted by d/dt To: Ore module <wbar> over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5 twisted by d/dt
- morphism_quotient(f)[source]¶
If this quotient in
and is a morphism vanishing on , return the induced map .EXAMPLES:
sage: K.<t> = Frac(GF(5)['t']) sage: S.<X> = OrePolynomialRing(K, K.derivation()) sage: P = X + t sage: M.<v,w> = S.quotient_module(P^2) sage: Q.<wbar> = M.quo(P*v) sage: f = M.hom({v: P*v}) sage: f Ore module endomorphism of Ore module <v, w> over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5 twisted by d/dt sage: g = Q.morphism_quotient(f) sage: g Ore module morphism: From: Ore module <wbar> over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5 twisted by d/dt To: Ore module <v, w> over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5 twisted by d/dt
When the given morphism does not vanish on
, an error is raised:sage: h = M.multiplication_map(X^5) sage: h Ore module endomorphism of Ore module <v, w> over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5 twisted by d/dt sage: Q.morphism_quotient(h) Traceback (most recent call last): ... ValueError: the morphism does not factor through this quotient
- over_fraction_field()[source]¶
Return the scalar extension of this Ore module to the fraction field.
EXAMPLES:
sage: A.<t> = QQ[] sage: d = A.derivation() sage: S.<X> = OrePolynomialRing(A, d) sage: M = S.quotient_module(X^2 + t*X + t) sage: M Ore module of rank 2 over Univariate Polynomial Ring in t over Rational Field twisted by d/dt sage: M.over_fraction_field() Ore module of rank 2 over Fraction Field of Univariate Polynomial Ring in t over Rational Field twisted by d/dt
If given, the variable names are preserved in this operation:
sage: N.<u,v> = S.quotient_module(X^2 + t*X + t) sage: N Ore module <u, v> over Univariate Polynomial Ring in t over Rational Field twisted by d/dt sage: N.over_fraction_field() Ore module <u, v> over Fraction Field of Univariate Polynomial Ring in t over Rational Field twisted by d/dt
When the base ring is already a field, the same module is returned:
sage: K.<z> = GF(5^3) sage: S.<X> = OrePolynomialRing(K, K.frobenius_endomorphism()) sage: M = S.quotient_module(X^2 + z*X + z) sage: M.over_fraction_field() is M True
- projection_morphism()[source]¶
Return the projection from the cover module to this quotient.
EXAMPLES:
sage: K.<t> = Frac(GF(5)['t']) sage: S.<X> = OrePolynomialRing(K, K.derivation()) sage: M.<v,w> = S.quotient_module((X + t)^2) sage: Q = M.quo((X + t)*v) sage: Q.projection_morphism() Ore module morphism: From: Ore module <v, w> over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5 twisted by d/dt To: Ore module of rank 1 over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5 twisted by d/dt
- relations(names=None)[source]¶
If this quotient in
, return .INPUT:
names– the names of the vectors of the basis of , orNone
EXAMPLES:
sage: K.<t> = Frac(GF(5)['t']) sage: S.<X> = OrePolynomialRing(K, K.derivation()) sage: M.<v,w> = S.quotient_module((X + t)^2) sage: Q = M.quo((X + t)*v) sage: N = Q.relations() sage: N Ore module of rank 1 over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5 twisted by d/dt sage: (X + t)*v in N True sage: Q == M/N True
It is also possible to define names for the basis elements of
:sage: N.<u> = Q.relations() sage: N Ore module <u> over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5 twisted by d/dt sage: M(u) v + 1/t*w
See also
- rename_basis(names, coerce=False)[source]¶
Return the same Ore module with the given naming for the vectors in its distinguished basis.
INPUT:
names– a string or a list of strings, the new namescoerce(default:False) – a boolean; ifTrue, a coercion map from this Ore module to the renamed version is set
EXAMPLES:
sage: K.<z> = GF(5^3) sage: S.<X> = OrePolynomialRing(K, K.frobenius_endomorphism()) sage: M = S.quotient_module(X^2 + z*X + 1) sage: M Ore module of rank 2 over Finite Field in z of size 5^3 twisted by z |--> z^5 sage: Me = M.rename_basis('e') sage: Me Ore module <e0, e1> over Finite Field in z of size 5^3 twisted by z |--> z^5
Now compare how elements are displayed:
sage: M.random_element() # random (3*z^2 + 4*z + 2, 3*z^2 + z) sage: Me.random_element() # random (2*z + 4)*e0 + (z^2 + 4*z + 4)*e1
At this point, there is no coercion map between
MandMe. Therefore, adding elements in both parents results in an error:sage: M.random_element() + Me.random_element() Traceback (most recent call last): ... TypeError: unsupported operand parent(s) for +: 'Ore module of rank 2 over Finite Field in z of size 5^3 twisted by z |--> z^5' and 'Ore module <e0, e1> over Finite Field in z of size 5^3 twisted by z |--> z^5'
In order to set this coercion, one should define
Meby passing the extra argumentcoerce=True:sage: Me = M.rename_basis('e', coerce=True) sage: M.random_element() + Me.random_element() # random 2*z^2*e0 + (z^2 + z + 4)*e1
Warning
Use
coerce=Truewith extreme caution. Indeed, setting inappropriate coercion maps may result in a circular path in the coercion graph which, in turn, could eventually break the coercion system.Note that the bracket construction also works:
sage: M.<v,w> = M.rename_basis() sage: M Ore module <v, w> over Finite Field in z of size 5^3 twisted by z |--> z^5
In this case,
and are automatically defined:sage: v + w v + w
- class sage.modules.ore_module.OreSubmodule(ambient, submodule, names)[source]¶
Bases:
OreModuleClass for submodules of Ore modules.
- ambient_module()[source]¶
Return the ambient Ore module in which this submodule lives.
EXAMPLES:
sage: K.<z> = GF(5^3) sage: S.<X> = OrePolynomialRing(K, K.frobenius_endomorphism()) sage: M.<v,w> = S.quotient_module((X + z)^2) sage: N = M.span((X + z)*v) sage: N.ambient_module() Ore module <v, w> over Finite Field in z of size 5^3 twisted by z |--> z^5 sage: N.ambient_module() is M True
- ambient_modules()[source]¶
Return the list of modules in which this module naturally lives.
EXAMPLES:
sage: K.<a> = GF(7^5) sage: S.<X> = OrePolynomialRing(K, K.frobenius_endomorphism()) sage: P = X^2 + a sage: M = S.quotient_module(P^3, names='e') sage: M Ore module <e0, e1, e2, e3, e4, e5> over Finite Field in a of size 7^5 twisted by a |--> a^7 sage: M.inject_variables() Defining e0, e1, e2, e3, e4, e5
For an ambient module, the list is reduced to one element (namely the module itself):
sage: M.ambient_modules() [Ore module <e0, e1, e2, e3, e4, e5> over Finite Field in a of size 7^5 twisted by a |--> a^7]
On the contrary, for a submodule of
, the list also contains the ambient space:sage: MP = M.span(P*e0) sage: MP.ambient_modules() [Ore module of rank 4 over Finite Field in a of size 7^5 twisted by a |--> a^7, Ore module <e0, e1, e2, e3, e4, e5> over Finite Field in a of size 7^5 twisted by a |--> a^7]
If we now create a submodule of
, the list gets even longer:sage: MP2 = MP.span(P^2*e0) sage: MP2.ambient_modules() [Ore module of rank 2 over Finite Field in a of size 7^5 twisted by a |--> a^7, Ore module of rank 4 over Finite Field in a of size 7^5 twisted by a |--> a^7, Ore module <e0, e1, e2, e3, e4, e5> over Finite Field in a of size 7^5 twisted by a |--> a^7]
We underline nevertheless that if we define
has a submodule of , the intermediate does not show up in the list:sage: MP2 = M.span(P^2*e0) sage: MP2.ambient_modules() [Ore module of rank 2 over Finite Field in a of size 7^5 twisted by a |--> a^7, Ore module <e0, e1, e2, e3, e4, e5> over Finite Field in a of size 7^5 twisted by a |--> a^7]
- injection_morphism()[source]¶
Return the inclusion of this submodule in the ambient space.
EXAMPLES:
sage: K.<z> = GF(5^3) sage: S.<X> = OrePolynomialRing(K, K.frobenius_endomorphism()) sage: M.<v,w> = S.quotient_module((X + z)^2) sage: N = M.span((X + z)*v) sage: N.injection_morphism() Ore module morphism: From: Ore module of rank 1 over Finite Field in z of size 5^3 twisted by z |--> z^5 To: Ore module <v, w> over Finite Field in z of size 5^3 twisted by z |--> z^5
- morphism_corestriction(f)[source]¶
If the image of
is contained in this submodule, return the corresponding corestriction of .EXAMPLES:
sage: K.<z> = GF(5^3) sage: S.<X> = OrePolynomialRing(K, K.frobenius_endomorphism()) sage: P = X + z sage: M.<v,w> = S.quotient_module(P^2) sage: N = M.span(P*v) sage: f = M.hom({v: P*v}) sage: f Ore module endomorphism of Ore module <v, w> over Finite Field in z of size 5^3 twisted by z |--> z^5 sage: g = N.morphism_corestriction(f) sage: g Ore module morphism: From: Ore module <v, w> over Finite Field in z of size 5^3 twisted by z |--> z^5 To: Ore module of rank 1 over Finite Field in z of size 5^3 twisted by z |--> z^5 sage: g.matrix() [ z] [4*z^2]
When the image of the morphism is not contained in this submodule, an error is raised:
sage: h = M.multiplication_map(X^3) sage: N.morphism_corestriction(h) Traceback (most recent call last): ... ValueError: the image of the morphism is not contained in this submodule
- morphism_restriction(f)[source]¶
Return the restriction of
to this submodule.EXAMPLES:
sage: K.<z> = GF(5^3) sage: S.<X> = OrePolynomialRing(K, K.frobenius_endomorphism()) sage: M.<v,w> = S.quotient_module((X + z)^2) sage: N = M.span((X + z)*v) sage: f = M.multiplication_map(X^3) sage: f Ore module endomorphism of Ore module <v, w> over Finite Field in z of size 5^3 twisted by z |--> z^5 sage: g = N.morphism_restriction(f) sage: g Ore module morphism: From: Ore module of rank 1 over Finite Field in z of size 5^3 twisted by z |--> z^5 To: Ore module <v, w> over Finite Field in z of size 5^3 twisted by z |--> z^5 sage: g.matrix() [ 3 4*z^2 + 2]
- over_fraction_field()[source]¶
Return the scalar extension of this Ore module to the fraction field.
EXAMPLES:
sage: A.<t> = QQ[] sage: d = A.derivation() sage: S.<X> = OrePolynomialRing(A, d) sage: M = S.quotient_module(X^2 + t*X + t) sage: M Ore module of rank 2 over Univariate Polynomial Ring in t over Rational Field twisted by d/dt sage: M.over_fraction_field() Ore module of rank 2 over Fraction Field of Univariate Polynomial Ring in t over Rational Field twisted by d/dt
If given, the variable names are preserved in this operation:
sage: N.<u,v> = S.quotient_module(X^2 + t*X + t) sage: N Ore module <u, v> over Univariate Polynomial Ring in t over Rational Field twisted by d/dt sage: N.over_fraction_field() Ore module <u, v> over Fraction Field of Univariate Polynomial Ring in t over Rational Field twisted by d/dt
When the base ring is already a field, the same module is returned:
sage: K.<z> = GF(5^3) sage: S.<X> = OrePolynomialRing(K, K.frobenius_endomorphism()) sage: M = S.quotient_module(X^2 + z*X + z) sage: M.over_fraction_field() is M True
- rename_basis(names, coerce=False)[source]¶
Return the same Ore module with the given naming for the vectors in its distinguished basis.
INPUT:
names– a string or a list of strings, the new namescoerce(default:False) – a boolean; ifTrue, a coercion map from this Ore module to renamed version is set
EXAMPLES:
sage: K.<z> = GF(5^3) sage: S.<X> = OrePolynomialRing(K, K.frobenius_endomorphism()) sage: M = S.quotient_module(X^2 + z^2) sage: M Ore module of rank 2 over Finite Field in z of size 5^3 twisted by z |--> z^5 sage: Me = M.rename_basis('e') sage: Me Ore module <e0, e1> over Finite Field in z of size 5^3 twisted by z |--> z^5
Now compare how elements are displayed:
sage: M.random_element() # random (3*z^2 + 4*z + 2, 3*z^2 + z) sage: Me.random_element() # random (2*z + 4)*e0 + (z^2 + 4*z + 4)*e1
At this point, there is no coercion map between
MandMe. Therefore, adding elements in both parents results in an error:sage: M.random_element() + Me.random_element() Traceback (most recent call last): ... TypeError: unsupported operand parent(s) for +: 'Ore module of rank 2 over Finite Field in z of size 5^3 twisted by z |--> z^5' and 'Ore module <e0, e1> over Finite Field in z of size 5^3 twisted by z |--> z^5'
In order to set this coercion, one should define
Meby passing the extra argumentcoerce=True:sage: Me = M.rename_basis('e', coerce=True) sage: M.random_element() + Me.random_element() # random 2*z^2*e0 + (z^2 + z + 4)*e1
Warning
Use
coerce=Truewith extreme caution. Indeed, setting inappropriate coercion maps may result in a circular path in the coercion graph which, in turn, could eventually break the coercion system.Note that the bracket construction also works:
sage: M.<v,w> = M.rename_basis() sage: M Ore module <v, w> over Finite Field in z of size 5^3 twisted by z |--> z^5
In this case,
and are automatically defined:sage: v + w v + w
- saturate(names=None, coerce=False)[source]¶
Return the saturation of this module in the ambient module.
By definition, the saturation of
in is the submodule of consisting of vectors such that for a nonzero scalar in the base ring.INPUT:
names– a string or a list of strings, the names of the vectors in a basis of the saturationcoerce(default:False) – a boolean; ifTrue, a coercion map from this Ore module to its saturation is set
EXAMPLES:
sage: A.<t> = GF(3)[] sage: f = A.hom([t+1]) sage: S.<X> = OrePolynomialRing(A, f) sage: P = X^2 + t sage: M = S.quotient_module(P^2, names='e') sage: M.inject_variables() Defining e0, e1, e2, e3
We create a submodule, which is not saturated:
sage: N = M.span(X^3*P*e0) sage: N.basis() [(t^3+2*t^2)*e0 + (t^2+2*t)*e2, (t^2+2*t+1)*e1 + (t+1)*e3]
and compute its saturation:
sage: Nsat = N.saturate() sage: Nsat.basis() [t*e0 + e2, (t+1)*e1 + e3]
One can check that
Nsatis the submodule generated by :sage: Nsat == M.span(P*e0) True
- class sage.modules.ore_module.ScalarAction[source]¶
Bases:
ActionAction by scalar multiplication on Ore modules.
- sage.modules.ore_module.normalize_names(names, rank)[source]¶
Return a normalized form of
names.INPUT:
names– a string, a list of strings orNonerank– the number of names to normalize
EXAMPLES:
sage: from sage.modules.ore_module import normalize_names
When
namesis a string, indices are added:sage: normalize_names('e', 3) ('e0', 'e1', 'e2')
When
namesis a list or a tuple, it remains untouched except that it is always casted to a tuple (in order to be hashable and serve as a key):sage: normalize_names(['u', 'v', 'w'], 3) ('u', 'v', 'w')
Similarly, when
namesisNone, nothing is returned:sage: normalize_names(None, 3)
If the number of names is not equal to
rank, an error is raised:sage: normalize_names(['u', 'v', 'w'], 2) Traceback (most recent call last): ... ValueError: the number of given names does not match the rank of the Ore module