Littlewood-Richardson tableaux¶
A semistandard tableau is Littlewood-Richardson with respect to
the sequence of partitions
AUTHORS:
Maria Gillespie, Jake Levinson, Anne Schilling (2016): initial version
- class sage.combinat.lr_tableau.LittlewoodRichardsonTableau(parent, t)[source]¶
Bases:
SemistandardTableauA semistandard tableau is Littlewood-Richardson with respect to the sequence of partitions
if, when restricted to each alphabet , is Yamanouchi.INPUT:
t– Littlewood-Richardson tableau; the input is supposed to be a list of lists specifying the rows of the tableau
EXAMPLES:
sage: from sage.combinat.lr_tableau import LittlewoodRichardsonTableau sage: LittlewoodRichardsonTableau([[1,1,3],[2,3],[4]], [[2,1],[2,1]]) [[1, 1, 3], [2, 3], [4]]
- class sage.combinat.lr_tableau.LittlewoodRichardsonTableaux(shape, weight)[source]¶
Bases:
SemistandardTableauxLittlewood-Richardson tableaux.
A semistandard tableau
is Littlewood-Richardson with respect to the sequence of partitions (called the weight) if is Yamanouchi when restricted to each alphabet .INPUT:
shape– the shape of the Littlewood-Richardson tableauxweight– the weight is a sequence of partitions
EXAMPLES:
sage: LittlewoodRichardsonTableaux([3,2,1],[[2,1],[2,1]]) Littlewood-Richardson Tableaux of shape [3, 2, 1] and weight ([2, 1], [2, 1])
- Element[source]¶
alias of
LittlewoodRichardsonTableau
- sage.combinat.lr_tableau.is_littlewood_richardson(t, heights)[source]¶
Return whether semistandard tableau
tis Littleword-Richardson with respect toheights.A tableau is Littlewood-Richardson with respect to
heightsgiven by if each subtableau with respect to the alphabets , , etc. is Yamanouchi.EXAMPLES:
sage: from sage.combinat.lr_tableau import is_littlewood_richardson sage: t = Tableau([[1,1,2,3,4],[2,3,3],[3]]) sage: is_littlewood_richardson(t,[2,2]) False sage: t = Tableau([[1,1,3],[2,3],[4,4]]) sage: is_littlewood_richardson(t,[2,2]) True sage: t = Tableau([[7],[8]]) sage: is_littlewood_richardson(t,[2,3,3]) False sage: is_littlewood_richardson([[2],[3]],[3,3]) False