Kähler Algebras¶
AUTHORS:
Shriya M
- class sage.categories.kahler_algebras.KahlerAlgebras(base, name=None)[source]¶
Bases:
Category_over_base_ringThe category of graded algebras satisfying the Kähler package.
A finite-dimensional graded algebra
satisfies the Kähler package if the following properties hold:Poincaré duality: There exists a perfect
-bilinear pairing given byHard-Lefschetz Theorem: The graded algebra contains Lefschetz elements
such that multiplication by is an injection from for all .Hodge-Riemann-Minikowski Relations: Every Lefchetz element
, define quadratic forms on given byThis quadratic form becomes positive definite upon restriction to the kernel of the following map
REFERENCES:
- class ParentMethods[source]¶
Bases:
object- hodge_riemann_relations(k)[source]¶
Return the quadratic form for the corresponding
k( ) for the Kähler algebra, where is the top degree.EXAMPLES:
sage: ch = matroids.Uniform(4, 6).chow_ring(QQ, False) sage: ch.hodge_riemann_relations(1) Quadratic form in 36 variables over Rational Field with coefficients: [ 3 -1 -1 3 -1 -1 -1 -1 -1 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3 ] [ * 3 -1 3 -1 -1 3 -1 -1 -1 -1 -1 -1 -1 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 -1 -1 -1 -1 -1 -1 3 ] [ * * 3 3 -1 -1 -1 -1 3 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 -1 -1 3 ] [ * * * 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ] [ * * * * 3 -1 3 -1 3 -1 -1 -1 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 ] [ * * * * * 3 3 -1 -1 3 -1 -1 -1 -1 -1 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 -1 -1 -1 -1 -1 3 ] [ * * * * * * 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ] [ * * * * * * * 3 3 3 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 -1 3 ] [ * * * * * * * * 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ] [ * * * * * * * * * 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ] [ * * * * * * * * * * 3 -1 3 -1 -1 3 -1 -1 3 -1 -1 -1 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 ] [ * * * * * * * * * * * 3 3 -1 3 -1 -1 3 -1 -1 -1 -1 -1 -1 -1 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 ] [ * * * * * * * * * * * * 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ] [ * * * * * * * * * * * * * 3 3 3 -1 -1 -1 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 -1 -1 -1 -1 3 ] [ * * * * * * * * * * * * * * 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ] [ * * * * * * * * * * * * * * * 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ] [ * * * * * * * * * * * * * * * * 3 3 3 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 3 ] [ * * * * * * * * * * * * * * * * * 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ] [ * * * * * * * * * * * * * * * * * * 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ] [ * * * * * * * * * * * * * * * * * * * 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ] [ * * * * * * * * * * * * * * * * * * * * 3 -1 3 -1 -1 3 -1 -1 -1 3 -1 -1 -1 3 -1 3 ] [ * * * * * * * * * * * * * * * * * * * * * 3 3 -1 3 -1 -1 -1 3 -1 -1 -1 3 -1 -1 3 ] [ * * * * * * * * * * * * * * * * * * * * * * 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ] [ * * * * * * * * * * * * * * * * * * * * * * * 3 3 3 -1 3 -1 -1 -1 3 -1 -1 -1 3 ] [ * * * * * * * * * * * * * * * * * * * * * * * * 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ] [ * * * * * * * * * * * * * * * * * * * * * * * * * 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ] [ * * * * * * * * * * * * * * * * * * * * * * * * * * 3 3 3 3 -1 -1 -1 -1 3 3 ] [ * * * * * * * * * * * * * * * * * * * * * * * * * * * 3 -1 -1 -1 -1 -1 -1 -1 -1 ] [ * * * * * * * * * * * * * * * * * * * * * * * * * * * * 3 -1 -1 -1 -1 -1 -1 -1 ] [ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 3 -1 -1 -1 -1 -1 -1 ] [ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 3 3 3 3 3 3 ] [ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 3 -1 -1 -1 -1 ] [ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 3 -1 -1 -1 ] [ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 3 -1 -1 ] [ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 3 -1 ] [ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 3 ] sage: ch.hodge_riemann_relations(3) Traceback (most recent call last): ... ValueError: k must be less than r/2 < 2
- lefschetz_element()[source]¶
Return one Lefschetz element of the given Kähler algebra.
EXAMPLES:
sage: U46 = matroids.Uniform(4, 6) sage: C = U46.chow_ring(QQ, False) sage: w = C.lefschetz_element(); w -2*A01 - 2*A02 - 2*A03 - 2*A04 - 2*A05 - 2*A12 - 2*A13 - 2*A14 - 2*A15 - 2*A23 - 2*A24 - 2*A25 - 2*A34 - 2*A35 - 2*A45 - 6*A012 - 6*A013 - 6*A014 - 6*A015 - 6*A023 - 6*A024 - 6*A025 - 6*A034 - 6*A035 - 6*A045 - 6*A123 - 6*A124 - 6*A125 - 6*A134 - 6*A135 - 6*A145 - 6*A234 - 6*A235 - 6*A245 - 6*A345 - 30*A012345 sage: basis_deg = {} sage: for b in C.basis(): ....: deg = b.homogeneous_degree() ....: if deg not in basis_deg: ....: basis_deg[deg] = [] ....: basis_deg[deg].append(b) sage: m = max(basis_deg); m 3 sage: len(basis_deg[1]) == len(basis_deg[2]) True sage: matrix([(w*b).to_vector() for b in basis_deg[1]]).rank() 36 sage: len(basis_deg[2]) 36
- poincare_pairing(a, b)[source]¶
Return the Poincaré pairing of two elements of the Kähler algebra.
EXAMPLES:
sage: ch = matroids.catalog.Fano().chow_ring(QQ, True, 'fy') sage: Ba, Bb, Bc, Bd, Be, Bf, Bg, Babf, Bace, Badg, Bbcd, Bbeg, Bcfg, Bdef, Babcdefg = ch.gens()[8:] sage: u = ch(-Babf^2 + Bcfg^2 - 8/7*Bc*Babcdefg + 1/2*Bd*Babcdefg - Bf*Babcdefg - Bg*Babcdefg); u -Babf^2 + Bcfg^2 - 8/7*Bc*Babcdefg + 1/2*Bd*Babcdefg - Bf*Babcdefg - Bg*Babcdefg sage: v = ch(Bg - 2/37*Babf + Badg + Bbeg + Bcfg + Babcdefg); v Bg - 2/37*Babf + Badg + Bbeg + Bcfg + Babcdefg sage: ch.poincare_pairing(v, u) 3
- super_categories()[source]¶
Return the super categories of
self.EXAMPLES:
sage: from sage.categories.kahler_algebras import KahlerAlgebras sage: C = KahlerAlgebras(QQ); C Category of kahler algebras over Rational Field sage: sorted(C.super_categories(), key=str) [Category of finite dimensional graded algebras with basis over Rational Field]